Super Resolution for Noisy Images Using Convolutional Neural Networks

نویسندگان

چکیده

The images in high resolution contain more useful information than the low resolution. Thus, high-resolution digital are preferred over low-resolution images. Image super-resolution is one of principal techniques for generating major advantages methods that they economical, independent image capture devices, and can be statically used. In this paper, a single-image network model based on convolutional neural networks proposed by combining conventional autoencoder residual approaches. A network-based dictionary method used to train input addition, linear refined unit thresholds output provide better dictionary. Autoencoders aid removal noise from enhancement their quality. Secondly, processes it further create image. experimental results demonstrate outstanding performance our compared other traditional methods. produces clearer detailed images, as important real-life applications. Moreover, has advantage learning, enhancement, removal. Furthermore, training with improved preprocessing creates an efficient versatile network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Convolutional Neural Networks and Noisy Images

The presence of noise represent a relevant issue in image feature extraction and classification. In deep learning, representation is learned directly from the data and, therefore, the classification model is influenced by the quality of the input. However, the ability of deep convolutional neural networks to deal with images that have a different quality when compare to those used to train the ...

متن کامل

Multi-Frame Video Super-Resolution Using Convolutional Neural Networks

Video super-resolution remains a challenging problem despite being a very active area of research. Even with huge strides made with single-image super-resolution, multiframe techniques, which utilize multiple frames in improving the quality of a given frame, have yet to fully take advantage of the power of deep learning. We propose a HR for multi-frame super-resolution that outputs a higher res...

متن کامل

Multi-input Cardiac Image Super-Resolution Using Convolutional Neural Networks

3D cardiac MR imaging enables accurate analysis of cardiac morphology and physiology. However, due to the requirements for long acquisition and breath-hold, the clinical routine is still dominated by multi-slice 2D imaging, which hamper the visualization of anatomy and quantitative measurements as relatively thick slices are acquired. As a solution, we propose a novel image super-resolution (SR...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

CISRDCNN: Super-resolution of compressed images using deep convolutional neural networks

In recent years, much research has been conducted on image super-resolution (SR). To the best of our knowledge, however, few SR methods were concerned with compressed images. The SR of compressed images is a challenging task due to the complicated compression artifacts, while many images suffer from them in practice. The intuitive solution for this difficult task is to decouple it into two sequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10050777